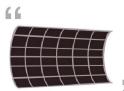


佳 谱 科 技

SN · 202411S008

高精度X射线荧光元素分析仪对车用甲醇燃料中 硫、氯元素的检测应用

—— High Performance X-ray Fluorescence spectrometer

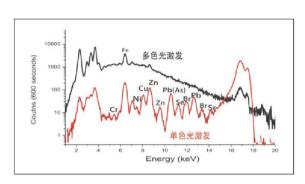

本方案采用高精度X射线荧光元素分析仪实现对车用甲醇燃料中硫(S)、氯(Cl)元素的现场、快速测定。

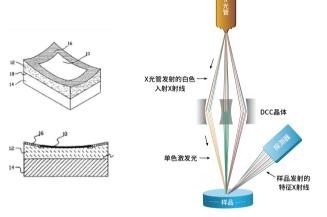
应用概述

甲醇燃料是利用工业甲醇或燃料甲醇,加变性醇添加剂,与现有国标汽柴油(或组分油),按一定体积(或重量比)经严格科学工艺调配制成的一种新型清洁燃料。一般分为甲醇汽油和甲醇柴油,可作为车用燃料替代品,是新能源的重要组成部分。

甲醇燃料中硫、氯元素含量是重要的技术指标,目前S元素含量 采用紫外荧光法检测,CI元素采用微库伦或电位滴定法。这些方法操 作繁琐,检测时间长,无法应对现场、快速检测。E-lite系列高精度X 射线荧光元素分析仪可对甲醇燃料中S、CI元素同时、快速、准确定量。

1998年发明





技术原理

高精度X射线荧光元素分析仪 (HPXRF) 采用单色聚焦双曲面弯晶(DCC),将来自射线源的多色X 光单色化并将其有效聚焦到被测量样品上,大幅提高仪器信噪比。经单色化后,样品中元素发射出特征X射线荧光信号,经高分辨率硅漂移检测器的收集与处理,由软件中FP 算法计算出样品中所含元素含量。

单波长与多波长激发产生X射线荧光相应信号对比

样品测试

"一次性样品杯"制样方式

一体化样品杯和测试膜,无需绷 膜及压膜过程

从样品杯尾部硅胶阀切 口处注入待测液体

将样品杯拧入样品杯底

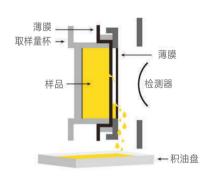
放入样品杯进行测试

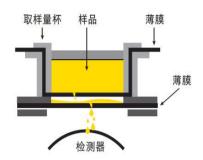
"可重复利用样品杯"制样方式

采用不锈钢样品杯 侧方预留排气口

使用工装辅助卡环将测试膜覆盖在样品 杯上

通过侧方预留口注入 样品约4ml

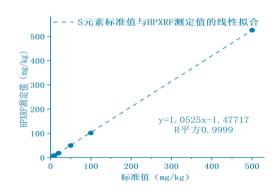

将样品杯安装在样品杯底座 上机测试样

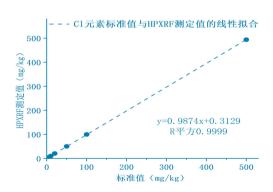

独一无二的"侧照式",降低样品意外泄露对检测窗的污染

E-lite系列分析仪样品腔

样品将被注入独特的accucell样品杯中,将样品杯从侧方置入仪器内部后,该创新设计可确保将意外泄漏的任何样品引入积油盘,以便清理和处理。

传统EDXRF仪器样品腔


传统产品的样品腔设计均提供覆盖单元视窗的薄膜,以防止检测器和X射线管发生意外样品泄漏。如果这层薄膜发生破损,样品就会渗入检测器和X射线管,带来非常高昂的维修成本。


<u>ıl.</u>

性能数据

标准曲线

采用甲醇中加入S、CI元素配制单标溶液建立曲线,浓度梯度为: 0、0.5、1、3、5、10、50、100、500mg/kg,测试时间300秒。

检出限

采用重复法计算检出限:对接近空白浓度的标准样品进行7次测定,根据7次测定结果计算其标准偏差 S,此时检出限MDL=S×3。

E-lite检出限数据表(单位: mg/kg)

检出限		标准•中技术要求		
总氯含量	0.3	有机氯 无机氯	≤1.0 ≤1.0	
硫含量	0.3	硫含量	≤1.0	

a:GB/T 4216-2023 《M100 车用甲醇燃料》。

重复性

采用空白样品加不同标进行7次重复测定,计算7次测定结果的相对标准偏差。

	不同含量的S元素重复性测试结果 mg/kg		不同含量的CI元素重复性测试结果 mg/kg			
1	1.07	3.07	4.88	0.83	3.20	5.05
2	1.22	2.90	4.97	0.93	2.79	4.74
3	1.26	3.05	5.13	1.10	2.85	5.23
4	1.16	3.27	5.08	1.02	2.80	5.00
5	1.29	3.29	5.25	0.94	2.95	5.06
6	0.97	3.43	5.21	1.09	2.69	4.74
7	1.16	3.20	5.24	0.85	3.01	4.92
平均值	1.16	3.17	5.11	0.97	2.90	4.96
SD	0.11	0.18	0.14	0.11	0.17	0.18
RSD	9.65%	5.60%	2.76%	11.10%	5.87%	3.58%

再现性

采用不同浓度样品分别装6个平行样, 计算6次测定结果的相对标准偏差。

	不同含量S元素再现性测试 结果(单位mg/kg)		不同含量CI元素再现性测试 结果(单位mg/kg)			
1	1.37	3.21	4.87	0.89	3.02	5.09
2	0.93	2.73	4.99	1.08	3.41	4.86
3	0.95	2.60	4.70	0.81	3.06	4.84
4	0.96	2.76	5.33	0.98	3.14	5.30
5	0.71	2.85	4.46	1.32	3.22	5.23
6	1.06	3.43	4.73	0.81	2.86	5.28
平均值	1.00	2.93	4.85	0.98	3.12	5.10
SD	0.22	0.32	0.29	0.20	0.19	0.21
RSD	21.7%	10.9%	6.1%	20.0%	6.0%	4.1%

准确度

选取6个样品,分别用标准方法及HPXRF 法测试,计算测定值的相对误差。

标准方法与HPXRF测定值结果对比 (单位: mg/kg)			
参考值	HPXRF测定值	相对误差	
7.4	8.3	12.1%	
7.4	8.7	18.2%	
5.2	4.7	-8.8%	
52.3	49.7	-4.9%	
119.0	104.6	-12.1%	
119.0	111.3	-6.4%	

仪器特点

移动便携性

整机重小于9kg,配有便携包,可选配移动电池,可携带至户外场地,环境适应性强,可在- 10° C- 50° C环境下工作。

简单快速

仪器操作简单,无需专业人员,便于现场操作,一键式进样测试,5分钟内检测完成并显示结果。

运维成本低

耗材仅包含测试膜, 无需化学试剂, 无需专业人员使用、维护。

超低检出限

以双曲面弯晶为核心的单波长激发X射线荧光光谱仪,大幅降低散射线背景,提高元素荧光信噪比。

测试精度高

智能精准软件算法,改善样品差异干扰,解决"精准度不高"的问题。

